Learning List Concepts through Program Induction Problem: Model human learning of structured concepts in two online experiments using a game-based paradigm.

Approach: Search over rewrite systems (top) to learn concepts (bottom).

def $\left.\begin{array}{c}\text { search(data, ho, } N=1500, ~ n-t o p=10, ~ n _s t e p s=50, ~ c o n f i d e n c e=2 ~ \\ \text { dataset }=[]\end{array}\right)$	
hs = heap ([$[\mathrm{h}$, score $)]$)	
for - in range	
h_next $=$ propose $($ hscore_next	
h's. insert((h, score))	
o_hat = most_likely_output(i, n_steps, best_hs)	
N *= (confidence if o_hat $==0$ else $1 /$ confidence)	
hs	

\# head-or-tail: the larger of head or sumed tail
\# Example: head-or tain $([2,3,11)=[4]$

Results: This approach accurately models overall (left) and per-trial performance (middle) in Exp. 1, and predicts curriculum training outperforming random training in Exp. 2.

baselines in a variety of domains: list processing from examples (left), text editing from examples (middle), and character and list manipulation from

Learning to Infer Program Sketches

Problem: Build systems which write code automatically from the kinds of specifications humans can easily provide, such as examples and natural language instruction.

Spec	Program
$[2,3,4,5,6] \rightarrow[2,4,6]$	filter(input, $x: \times \% 2==0)$
$[5,8,3,2,1,12] \rightarrow[8,2,12]$	
Given an array of numbers, your	(reduce (reverse(digits (de
task is to compute the median of	ref (sort a) (/ (len a)
the given array with its digits	2)))) $0($ lambda2 ($+(*$
reversed.	arg1 10) arg2)))

Approach: Learn Program sketches, which serve as an intermediate between pattern recognition and explicit search approaches.

Logical Rule Induction via Neural Theorem Proving
Problem: Transform a knowledge base of observations (left) into a logical
theory containing generalized predicates and core facts (right)

Approach: Learn programs using neuro-symbolic induction. This overview shows one reasoning step.

Results: This approach recovers taxonomic relations (left) and outperforms previous state-of-the-art on a variety of problems (right; score is percentage of random initializations leading to solution. δ ILP is previous state-of-the-art (Evans, Grefenstette, 2018)).

MIT Stephen A. Schwarzman
 College of Computing

