
This is a caption for the example and it may be this long or longer

Approach: Search over rewrite systems (top) to learn concepts (bottom).

Concept Learning as Program Learning

Logical Rule Induction via Neural Theorem Proving

Computational Cognitive Science Group
Dept. of Brain and Cognitive Sciences

Joshua S. Rule, Andrés Campero,
Maxwell Nye, Joshua B. Tenenbaum

Learning List Concepts through Program Induction Learning to Infer Program Sketches 

Problem: Model human learning of 

structured concepts in two online 

experiments using a game-based 

paradigm. 

Results: This approach accurately models overall (left) and per-trial

performance (middle) in Exp. 1, and predicts curriculum training

outperforming random training in Exp. 2.

Experiment 1

Figure 1: Graphics used in the experiments. a: Martha, the scientist.
b: A magical machine. c: Packages could have numbers between 0
and 9. d: Participants predicted outputs (right of arrow) for different
inputs (left of arrow). Clicking ‘+’ makes another package appear.
Right-clicking removes packages. d: Input/output history. Hovering
over P shows past predictions. Try it at: https://git.io/vNbKc

Experiment 1: Mapping the order of difficulty

Experiment 1 studied how people learn concepts from exam-
ples. In this experiment, participants sequentially predicted
how a concept would transform a input sequence into an out-
put sequence. To better understand what sorts of concepts are
easy or difficult for humans to learn, we created a set of 12
list concepts of varying complexity (see Listing 1).

Participants and Design We recruited 149 participants (61
female, mean age=36.93, SD=12.20) from Amazon Mechan-
ical Turk. Participants were paid a flat fee of $1. The exper-
iment took 16 minutes on average to complete. Participants
were randomly assigned 5 distinct concepts and submitted 10
sequential trials per concept.

# const xs: return 3
# Example: const ([1 ,2,4]) = [3]
const(x_) = 3;

# total xs: sum all the elements of xs
# Example: total ([1 ,2,3]) = [6]
total(x_) = sum(x_);

# increment xs: add 1 to each element of xs
# Example: increment ([1,2]) = [2,3]
increment(x_) = add(1 x_);

# head xs: return the first element of xs
# Example: head ([2 ,3,1]) = [2]
head(cons(x_ y_)) = x_;

# length xs: compute the length of xs
# Example: length ([2 ,3,1]) = [3]
length ([]) = 0;
length(cons(x_ y_)) = succ(length(y_));

# sort xs: sort xs
# Example: sort ([3,1]) = [1,3]
sort ([]) = [];
sort(cons(x_ y_)) = insert(x_ sort(y_));

# deduplicate xs: remove all duplicates from xs
# Example: deduplicate ([2 ,1,2,2,1 ]) = [2,1]
deduplicate ([]) = [];
deduplicate(cons(x_ y_)) =

cons(x_ deduplicate(remove(x_ y_)))

# cumsum xs: cumulatively sum the elements of xs
# Example: cumsum ([2 ,3,1]) = [2,5,6]
cumsum ([]) = [];
cumsum(cons(x_ y_)) = cons(x_ cumsum(add(x_ y_)))

# filter_odd xs: remove the odd numbers from xs
# Example: filter_odd ([2 ,3,1,4 ]) = [2,4]
filter_odd ([]) = [];
filter_odd(cons(x_ y_)) =

if(even?(x_) cons(x_ filter_odd(y_)) filter_odd(y_));

# index-in-head xs: return the headth element of the xs
# Example: index_in_head ([2,3]) = [3]
index-in-head(cons(0 y_)) = 0
index-in-head(cons(succ(x_) y_)) = nth(x_ y_);

# head-or-tail: return the larger of head or sum-of-tail
# Example: head_or_tail ([2 ,3,1]) = [4]
head-or-tail ([]) = 0;
head-or-tail(cons(x_ y_)) =

if(greater(x_ sum(y_)) x_ sum(y_));

# count3 xs: how often does 3 appear in xs?
# Example: count3 ([2 ,3,3]) = [2]
count3(x_) = count(succ(succ(succ(0))) x_);

Listing 1: Rewrite rules for the concepts in Experiment 1.

Participants played a game called Martha’s Magical Ma-
chines in which they helped a scientist, Martha (Fig. 1a),
study magical machines. Magical machines come in differ-
ent forms (e.g. Fig. 1b) but all take numbered packages as
input and return numbered packages as output (Fig. 1c). Par-
ticipants were asked to predict the output for different inputs.
Each participant interacted with 5 magical machines, one in
each of five rounds. For each participant round, we uniformly
sampled a concept from a pool of twelve concepts (see List-
ing 1) without replacement. Within each round, participants
completed 10 consecutive trials sampled randomly without
replacement from a pool of per-concept inputs.

On each trial, participants saw one to five packages waiting
to be submitted to the machine (Fig. 1d). Each package was
numbered between 0 and 9. Participants then predicted how
many packages the machine would produce (between one and
five), their labels (between 0 and 9), and their order. After
clicking Test, an input would be submitted to the machine and
the correct output produced. The history of inputs, outputs,
and participant responses was displayed next to the machine
(Fig. 1e). Once a participant submitted 10 predictions for
one machine, they were asked to briefly describe what they
thought the machine did, and then moved to the next round
to interact with a new (visually different) machine. The game
finished after 5 rounds (i.e. 5 machines).

Results The right side of Figure 2 shows mean performance
on the last 5 predictions for each function. Participants gener-
ally performed better for concepts that involved arithmetical
operations such as total or increment. Concepts that in-
volved indexing of the sequence such as index-in-head or
head-or-tail were generally more difficult to learn. The
hardest concept, however, was counting the numbers of 3s in
a sequence. Analyzing performance within each participant
revealed a strong correlation between average performance
during the first 5 trials and performance during the last 5 tri-
als over all rounds (r(148) = 0.80, p < .001). This indicates
that some people were consistently better at figuring out the
concepts than others. While performance and round number
were only marginally correlated (r(148) = 0.04, p = .019),
performance and trial number within a round were signifi-
cantly correlated (r(148) = 0.36, p < .001). Mean scores
across the first 5 trials were indeed significantly different
from mean scores across the last 5 trials over all problems
(t(149) = 22.04, p < .001, d = 1.8).

Figure 1: Graphics used in the experiments. a: Martha, the scientist.
b: A magical machine. c: Packages could have numbers between 0
and 9. d: Participants predicted outputs (right of arrow) for different
inputs (left of arrow). Clicking ‘+’ makes another package appear.
Right-clicking removes packages. d: Input/output history. Hovering
over P shows past predictions. Try it at: https://git.io/vNbKc

Experiment 1: Mapping the order of difficulty

Experiment 1 studied how people learn concepts from exam-
ples. In this experiment, participants sequentially predicted
how a concept would transform a input sequence into an out-
put sequence. To better understand what sorts of concepts are
easy or difficult for humans to learn, we created a set of 12
list concepts of varying complexity (see Listing 1).

Participants and Design We recruited 149 participants (61
female, mean age=36.93, SD=12.20) from Amazon Mechan-
ical Turk. Participants were paid a flat fee of $1. The exper-
iment took 16 minutes on average to complete. Participants
were randomly assigned 5 distinct concepts and submitted 10
sequential trials per concept.

# const xs: return 3
# Example: const ([1 ,2,4]) = [3]
const(x_) = 3;

# total xs: sum all the elements of xs
# Example: total ([1 ,2,3]) = [6]
total(x_) = sum(x_);

# increment xs: add 1 to each element of xs
# Example: increment ([1,2]) = [2,3]
increment(x_) = add(1 x_);

# head xs: return the first element of xs
# Example: head ([2 ,3,1]) = [2]
head(cons(x_ y_)) = x_;

# length xs: compute the length of xs
# Example: length ([2 ,3,1]) = [3]
length ([]) = 0;
length(cons(x_ y_)) = succ(length(y_));

# sort xs: sort xs
# Example: sort ([3,1]) = [1,3]
sort ([]) = [];
sort(cons(x_ y_)) = insert(x_ sort(y_));

# deduplicate xs: remove all duplicates from xs
# Example: deduplicate ([2 ,1,2,2,1 ]) = [2,1]
deduplicate ([]) = [];
deduplicate(cons(x_ y_)) =

cons(x_ deduplicate(remove(x_ y_)))

# cumsum xs: cumulatively sum the elements of xs
# Example: cumsum ([2 ,3,1]) = [2,5,6]
cumsum ([]) = [];
cumsum(cons(x_ y_)) = cons(x_ cumsum(add(x_ y_)))

# filter_odd xs: remove the odd numbers from xs
# Example: filter_odd ([2 ,3,1,4 ]) = [2,4]
filter_odd ([]) = [];
filter_odd(cons(x_ y_)) =

if(even?(x_) cons(x_ filter_odd(y_)) filter_odd(y_));

# index-in-head xs: return the headth element of the xs
# Example: index_in_head ([2,3]) = [3]
index-in-head(cons(0 y_)) = 0
index-in-head(cons(succ(x_) y_)) = nth(x_ y_);

# head-or-tail: return the larger of head or sum-of-tail
# Example: head_or_tail ([2 ,3,1]) = [4]
head-or-tail ([]) = 0;
head-or-tail(cons(x_ y_)) =

if(greater(x_ sum(y_)) x_ sum(y_));

# count3 xs: how often does 3 appear in xs?
# Example: count3 ([2 ,3,3]) = [2]
count3(x_) = count(succ(succ(succ(0))) x_);

Listing 1: Rewrite rules for the concepts in Experiment 1.

Participants played a game called Martha’s Magical Ma-
chines in which they helped a scientist, Martha (Fig. 1a),
study magical machines. Magical machines come in differ-
ent forms (e.g. Fig. 1b) but all take numbered packages as
input and return numbered packages as output (Fig. 1c). Par-
ticipants were asked to predict the output for different inputs.
Each participant interacted with 5 magical machines, one in
each of five rounds. For each participant round, we uniformly
sampled a concept from a pool of twelve concepts (see List-
ing 1) without replacement. Within each round, participants
completed 10 consecutive trials sampled randomly without
replacement from a pool of per-concept inputs.

On each trial, participants saw one to five packages waiting
to be submitted to the machine (Fig. 1d). Each package was
numbered between 0 and 9. Participants then predicted how
many packages the machine would produce (between one and
five), their labels (between 0 and 9), and their order. After
clicking Test, an input would be submitted to the machine and
the correct output produced. The history of inputs, outputs,
and participant responses was displayed next to the machine
(Fig. 1e). Once a participant submitted 10 predictions for
one machine, they were asked to briefly describe what they
thought the machine did, and then moved to the next round
to interact with a new (visually different) machine. The game
finished after 5 rounds (i.e. 5 machines).

Results The right side of Figure 2 shows mean performance
on the last 5 predictions for each function. Participants gener-
ally performed better for concepts that involved arithmetical
operations such as total or increment. Concepts that in-
volved indexing of the sequence such as index-in-head or
head-or-tail were generally more difficult to learn. The
hardest concept, however, was counting the numbers of 3s in
a sequence. Analyzing performance within each participant
revealed a strong correlation between average performance
during the first 5 trials and performance during the last 5 tri-
als over all rounds (r(148) = 0.80, p < .001). This indicates
that some people were consistently better at figuring out the
concepts than others. While performance and round number
were only marginally correlated (r(148) = 0.04, p = .019),
performance and trial number within a round were signifi-
cantly correlated (r(148) = 0.36, p < .001). Mean scores
across the first 5 trials were indeed significantly different
from mean scores across the last 5 trials over all problems
(t(149) = 22.04, p < .001, d = 1.8).

Figure 1: Graphics used in the experiments. a: Martha, the scientist.
b: A magical machine. c: Packages could have numbers between 0
and 9. d: Participants predicted outputs (right of arrow) for different
inputs (left of arrow). Clicking ‘+’ makes another package appear.
Right-clicking removes packages. d: Input/output history. Hovering
over P shows past predictions. Try it at: https://git.io/vNbKc

Experiment 1: Mapping the order of difficulty

Experiment 1 studied how people learn concepts from exam-
ples. In this experiment, participants sequentially predicted
how a concept would transform a input sequence into an out-
put sequence. To better understand what sorts of concepts are
easy or difficult for humans to learn, we created a set of 12
list concepts of varying complexity (see Listing 1).

Participants and Design We recruited 149 participants (61
female, mean age=36.93, SD=12.20) from Amazon Mechan-
ical Turk. Participants were paid a flat fee of $1. The exper-
iment took 16 minutes on average to complete. Participants
were randomly assigned 5 distinct concepts and submitted 10
sequential trials per concept.

# const xs: return 3
# Example: const ([1 ,2,4]) = [3]
const(x_) = 3;

# total xs: sum all the elements of xs
# Example: total ([1 ,2,3]) = [6]
total(x_) = sum(x_);

# increment xs: add 1 to each element of xs
# Example: increment ([1,2]) = [2,3]
increment(x_) = add(1 x_);

# head xs: return the first element of xs
# Example: head ([2 ,3,1]) = [2]
head(cons(x_ y_)) = x_;

# length xs: compute the length of xs
# Example: length ([2 ,3,1]) = [3]
length ([]) = 0;
length(cons(x_ y_)) = succ(length(y_));

# sort xs: sort xs
# Example: sort ([3,1]) = [1,3]
sort ([]) = [];
sort(cons(x_ y_)) = insert(x_ sort(y_));

# deduplicate xs: remove all duplicates from xs
# Example: deduplicate ([2 ,1,2,2,1 ]) = [2,1]
deduplicate ([]) = [];
deduplicate(cons(x_ y_)) =

cons(x_ deduplicate(remove(x_ y_)))

# cumsum xs: cumulatively sum the elements of xs
# Example: cumsum ([2 ,3,1]) = [2,5,6]
cumsum ([]) = [];
cumsum(cons(x_ y_)) = cons(x_ cumsum(add(x_ y_)))

# filter_odd xs: remove the odd numbers from xs
# Example: filter_odd ([2 ,3,1,4 ]) = [2,4]
filter_odd ([]) = [];
filter_odd(cons(x_ y_)) =

if(even?(x_) cons(x_ filter_odd(y_)) filter_odd(y_));

# index-in-head xs: return the headth element of the xs
# Example: index_in_head ([2,3]) = [3]
index-in-head(cons(0 y_)) = 0
index-in-head(cons(succ(x_) y_)) = nth(x_ y_);

# head-or-tail: return the larger of head or sum-of-tail
# Example: head_or_tail ([2 ,3,1]) = [4]
head-or-tail ([]) = 0;
head-or-tail(cons(x_ y_)) =

if(greater(x_ sum(y_)) x_ sum(y_));

# count3 xs: how often does 3 appear in xs?
# Example: count3 ([2 ,3,3]) = [2]
count3(x_) = count(succ(succ(succ(0))) x_);

Listing 1: Rewrite rules for the concepts in Experiment 1.

Participants played a game called Martha’s Magical Ma-
chines in which they helped a scientist, Martha (Fig. 1a),
study magical machines. Magical machines come in differ-
ent forms (e.g. Fig. 1b) but all take numbered packages as
input and return numbered packages as output (Fig. 1c). Par-
ticipants were asked to predict the output for different inputs.
Each participant interacted with 5 magical machines, one in
each of five rounds. For each participant round, we uniformly
sampled a concept from a pool of twelve concepts (see List-
ing 1) without replacement. Within each round, participants
completed 10 consecutive trials sampled randomly without
replacement from a pool of per-concept inputs.

On each trial, participants saw one to five packages waiting
to be submitted to the machine (Fig. 1d). Each package was
numbered between 0 and 9. Participants then predicted how
many packages the machine would produce (between one and
five), their labels (between 0 and 9), and their order. After
clicking Test, an input would be submitted to the machine and
the correct output produced. The history of inputs, outputs,
and participant responses was displayed next to the machine
(Fig. 1e). Once a participant submitted 10 predictions for
one machine, they were asked to briefly describe what they
thought the machine did, and then moved to the next round
to interact with a new (visually different) machine. The game
finished after 5 rounds (i.e. 5 machines).

Results The right side of Figure 2 shows mean performance
on the last 5 predictions for each function. Participants gener-
ally performed better for concepts that involved arithmetical
operations such as total or increment. Concepts that in-
volved indexing of the sequence such as index-in-head or
head-or-tail were generally more difficult to learn. The
hardest concept, however, was counting the numbers of 3s in
a sequence. Analyzing performance within each participant
revealed a strong correlation between average performance
during the first 5 trials and performance during the last 5 tri-
als over all rounds (r(148) = 0.80, p < .001). This indicates
that some people were consistently better at figuring out the
concepts than others. While performance and round number
were only marginally correlated (r(148) = 0.04, p = .019),
performance and trial number within a round were signifi-
cantly correlated (r(148) = 0.36, p < .001). Mean scores
across the first 5 trials were indeed significantly different
from mean scores across the last 5 trials over all problems
(t(149) = 22.04, p < .001, d = 1.8).

We picked the 12 concepts by hand, picking what we thought were easy and hard concepts to see if there was significant variance in human performance and whether 
our model could capture it. What you see here (sorry for the small font!), are the rules our modeled needed to learn for each of these 12 concepts. Each of these sets of 
rules represents what our model must learn to add to its language.

the larger of head or summed tail

Experiment 1

Figure 1: Graphics used in the experiments. a: Martha, the scientist.
b: A magical machine. c: Packages could have numbers between 0
and 9. d: Participants predicted outputs (right of arrow) for different
inputs (left of arrow). Clicking ‘+’ makes another package appear.
Right-clicking removes packages. d: Input/output history. Hovering
over P shows past predictions. Try it at: https://git.io/vNbKc

Experiment 1: Mapping the order of difficulty

Experiment 1 studied how people learn concepts from exam-
ples. In this experiment, participants sequentially predicted
how a concept would transform a input sequence into an out-
put sequence. To better understand what sorts of concepts are
easy or difficult for humans to learn, we created a set of 12
list concepts of varying complexity (see Listing 1).

Participants and Design We recruited 149 participants (61
female, mean age=36.93, SD=12.20) from Amazon Mechan-
ical Turk. Participants were paid a flat fee of $1. The exper-
iment took 16 minutes on average to complete. Participants
were randomly assigned 5 distinct concepts and submitted 10
sequential trials per concept.

# const xs: return 3
# Example: const ([1 ,2,4]) = [3]
const(x_) = 3;

# total xs: sum all the elements of xs
# Example: total ([1 ,2,3]) = [6]
total(x_) = sum(x_);

# increment xs: add 1 to each element of xs
# Example: increment ([1,2]) = [2,3]
increment(x_) = add(1 x_);

# head xs: return the first element of xs
# Example: head ([2 ,3,1]) = [2]
head(cons(x_ y_)) = x_;

# length xs: compute the length of xs
# Example: length ([2 ,3,1]) = [3]
length ([]) = 0;
length(cons(x_ y_)) = succ(length(y_));

# sort xs: sort xs
# Example: sort ([3,1]) = [1,3]
sort ([]) = [];
sort(cons(x_ y_)) = insert(x_ sort(y_));

# deduplicate xs: remove all duplicates from xs
# Example: deduplicate ([2 ,1,2,2,1 ]) = [2,1]
deduplicate ([]) = [];
deduplicate(cons(x_ y_)) =

cons(x_ deduplicate(remove(x_ y_)))

# cumsum xs: cumulatively sum the elements of xs
# Example: cumsum ([2 ,3,1]) = [2,5,6]
cumsum ([]) = [];
cumsum(cons(x_ y_)) = cons(x_ cumsum(add(x_ y_)))

# filter_odd xs: remove the odd numbers from xs
# Example: filter_odd ([2 ,3,1,4 ]) = [2,4]
filter_odd ([]) = [];
filter_odd(cons(x_ y_)) =

if(even?(x_) cons(x_ filter_odd(y_)) filter_odd(y_));

# index-in-head xs: return the headth element of the xs
# Example: index_in_head ([2,3]) = [3]
index-in-head(cons(0 y_)) = 0
index-in-head(cons(succ(x_) y_)) = nth(x_ y_);

# head-or-tail: return the larger of head or sum-of-tail
# Example: head_or_tail ([2 ,3,1]) = [4]
head-or-tail ([]) = 0;
head-or-tail(cons(x_ y_)) =

if(greater(x_ sum(y_)) x_ sum(y_));

# count3 xs: how often does 3 appear in xs?
# Example: count3 ([2 ,3,3]) = [2]
count3(x_) = count(succ(succ(succ(0))) x_);

Listing 1: Rewrite rules for the concepts in Experiment 1.

Participants played a game called Martha’s Magical Ma-
chines in which they helped a scientist, Martha (Fig. 1a),
study magical machines. Magical machines come in differ-
ent forms (e.g. Fig. 1b) but all take numbered packages as
input and return numbered packages as output (Fig. 1c). Par-
ticipants were asked to predict the output for different inputs.
Each participant interacted with 5 magical machines, one in
each of five rounds. For each participant round, we uniformly
sampled a concept from a pool of twelve concepts (see List-
ing 1) without replacement. Within each round, participants
completed 10 consecutive trials sampled randomly without
replacement from a pool of per-concept inputs.

On each trial, participants saw one to five packages waiting
to be submitted to the machine (Fig. 1d). Each package was
numbered between 0 and 9. Participants then predicted how
many packages the machine would produce (between one and
five), their labels (between 0 and 9), and their order. After
clicking Test, an input would be submitted to the machine and
the correct output produced. The history of inputs, outputs,
and participant responses was displayed next to the machine
(Fig. 1e). Once a participant submitted 10 predictions for
one machine, they were asked to briefly describe what they
thought the machine did, and then moved to the next round
to interact with a new (visually different) machine. The game
finished after 5 rounds (i.e. 5 machines).

Results The right side of Figure 2 shows mean performance
on the last 5 predictions for each function. Participants gener-
ally performed better for concepts that involved arithmetical
operations such as total or increment. Concepts that in-
volved indexing of the sequence such as index-in-head or
head-or-tail were generally more difficult to learn. The
hardest concept, however, was counting the numbers of 3s in
a sequence. Analyzing performance within each participant
revealed a strong correlation between average performance
during the first 5 trials and performance during the last 5 tri-
als over all rounds (r(148) = 0.80, p < .001). This indicates
that some people were consistently better at figuring out the
concepts than others. While performance and round number
were only marginally correlated (r(148) = 0.04, p = .019),
performance and trial number within a round were signifi-
cantly correlated (r(148) = 0.36, p < .001). Mean scores
across the first 5 trials were indeed significantly different
from mean scores across the last 5 trials over all problems
(t(149) = 22.04, p < .001, d = 1.8).

Figure 1: Graphics used in the experiments. a: Martha, the scientist.
b: A magical machine. c: Packages could have numbers between 0
and 9. d: Participants predicted outputs (right of arrow) for different
inputs (left of arrow). Clicking ‘+’ makes another package appear.
Right-clicking removes packages. d: Input/output history. Hovering
over P shows past predictions. Try it at: https://git.io/vNbKc

Experiment 1: Mapping the order of difficulty

Experiment 1 studied how people learn concepts from exam-
ples. In this experiment, participants sequentially predicted
how a concept would transform a input sequence into an out-
put sequence. To better understand what sorts of concepts are
easy or difficult for humans to learn, we created a set of 12
list concepts of varying complexity (see Listing 1).

Participants and Design We recruited 149 participants (61
female, mean age=36.93, SD=12.20) from Amazon Mechan-
ical Turk. Participants were paid a flat fee of $1. The exper-
iment took 16 minutes on average to complete. Participants
were randomly assigned 5 distinct concepts and submitted 10
sequential trials per concept.

# const xs: return 3
# Example: const ([1 ,2,4]) = [3]
const(x_) = 3;

# total xs: sum all the elements of xs
# Example: total ([1 ,2,3]) = [6]
total(x_) = sum(x_);

# increment xs: add 1 to each element of xs
# Example: increment ([1,2]) = [2,3]
increment(x_) = add(1 x_);

# head xs: return the first element of xs
# Example: head ([2 ,3,1]) = [2]
head(cons(x_ y_)) = x_;

# length xs: compute the length of xs
# Example: length ([2 ,3,1]) = [3]
length ([]) = 0;
length(cons(x_ y_)) = succ(length(y_));

# sort xs: sort xs
# Example: sort ([3,1]) = [1,3]
sort ([]) = [];
sort(cons(x_ y_)) = insert(x_ sort(y_));

# deduplicate xs: remove all duplicates from xs
# Example: deduplicate ([2 ,1,2,2,1 ]) = [2,1]
deduplicate ([]) = [];
deduplicate(cons(x_ y_)) =

cons(x_ deduplicate(remove(x_ y_)))

# cumsum xs: cumulatively sum the elements of xs
# Example: cumsum ([2 ,3,1]) = [2,5,6]
cumsum ([]) = [];
cumsum(cons(x_ y_)) = cons(x_ cumsum(add(x_ y_)))

# filter_odd xs: remove the odd numbers from xs
# Example: filter_odd ([2 ,3,1,4 ]) = [2,4]
filter_odd ([]) = [];
filter_odd(cons(x_ y_)) =

if(even?(x_) cons(x_ filter_odd(y_)) filter_odd(y_));

# index-in-head xs: return the headth element of the xs
# Example: index_in_head ([2,3]) = [3]
index-in-head(cons(0 y_)) = 0
index-in-head(cons(succ(x_) y_)) = nth(x_ y_);

# head-or-tail: return the larger of head or sum-of-tail
# Example: head_or_tail ([2 ,3,1]) = [4]
head-or-tail ([]) = 0;
head-or-tail(cons(x_ y_)) =

if(greater(x_ sum(y_)) x_ sum(y_));

# count3 xs: how often does 3 appear in xs?
# Example: count3 ([2 ,3,3]) = [2]
count3(x_) = count(succ(succ(succ(0))) x_);

Listing 1: Rewrite rules for the concepts in Experiment 1.

Participants played a game called Martha’s Magical Ma-
chines in which they helped a scientist, Martha (Fig. 1a),
study magical machines. Magical machines come in differ-
ent forms (e.g. Fig. 1b) but all take numbered packages as
input and return numbered packages as output (Fig. 1c). Par-
ticipants were asked to predict the output for different inputs.
Each participant interacted with 5 magical machines, one in
each of five rounds. For each participant round, we uniformly
sampled a concept from a pool of twelve concepts (see List-
ing 1) without replacement. Within each round, participants
completed 10 consecutive trials sampled randomly without
replacement from a pool of per-concept inputs.

On each trial, participants saw one to five packages waiting
to be submitted to the machine (Fig. 1d). Each package was
numbered between 0 and 9. Participants then predicted how
many packages the machine would produce (between one and
five), their labels (between 0 and 9), and their order. After
clicking Test, an input would be submitted to the machine and
the correct output produced. The history of inputs, outputs,
and participant responses was displayed next to the machine
(Fig. 1e). Once a participant submitted 10 predictions for
one machine, they were asked to briefly describe what they
thought the machine did, and then moved to the next round
to interact with a new (visually different) machine. The game
finished after 5 rounds (i.e. 5 machines).

Results The right side of Figure 2 shows mean performance
on the last 5 predictions for each function. Participants gener-
ally performed better for concepts that involved arithmetical
operations such as total or increment. Concepts that in-
volved indexing of the sequence such as index-in-head or
head-or-tail were generally more difficult to learn. The
hardest concept, however, was counting the numbers of 3s in
a sequence. Analyzing performance within each participant
revealed a strong correlation between average performance
during the first 5 trials and performance during the last 5 tri-
als over all rounds (r(148) = 0.80, p < .001). This indicates
that some people were consistently better at figuring out the
concepts than others. While performance and round number
were only marginally correlated (r(148) = 0.04, p = .019),
performance and trial number within a round were signifi-
cantly correlated (r(148) = 0.36, p < .001). Mean scores
across the first 5 trials were indeed significantly different
from mean scores across the last 5 trials over all problems
(t(149) = 22.04, p < .001, d = 1.8).

Figure 1: Graphics used in the experiments. a: Martha, the scientist.
b: A magical machine. c: Packages could have numbers between 0
and 9. d: Participants predicted outputs (right of arrow) for different
inputs (left of arrow). Clicking ‘+’ makes another package appear.
Right-clicking removes packages. d: Input/output history. Hovering
over P shows past predictions. Try it at: https://git.io/vNbKc

Experiment 1: Mapping the order of difficulty

Experiment 1 studied how people learn concepts from exam-
ples. In this experiment, participants sequentially predicted
how a concept would transform a input sequence into an out-
put sequence. To better understand what sorts of concepts are
easy or difficult for humans to learn, we created a set of 12
list concepts of varying complexity (see Listing 1).

Participants and Design We recruited 149 participants (61
female, mean age=36.93, SD=12.20) from Amazon Mechan-
ical Turk. Participants were paid a flat fee of $1. The exper-
iment took 16 minutes on average to complete. Participants
were randomly assigned 5 distinct concepts and submitted 10
sequential trials per concept.

# const xs: return 3
# Example: const ([1 ,2,4]) = [3]
const(x_) = 3;

# total xs: sum all the elements of xs
# Example: total ([1 ,2,3]) = [6]
total(x_) = sum(x_);

# increment xs: add 1 to each element of xs
# Example: increment ([1,2]) = [2,3]
increment(x_) = add(1 x_);

# head xs: return the first element of xs
# Example: head ([2 ,3,1]) = [2]
head(cons(x_ y_)) = x_;

# length xs: compute the length of xs
# Example: length ([2 ,3,1]) = [3]
length ([]) = 0;
length(cons(x_ y_)) = succ(length(y_));

# sort xs: sort xs
# Example: sort ([3,1]) = [1,3]
sort ([]) = [];
sort(cons(x_ y_)) = insert(x_ sort(y_));

# deduplicate xs: remove all duplicates from xs
# Example: deduplicate ([2 ,1,2,2,1 ]) = [2,1]
deduplicate ([]) = [];
deduplicate(cons(x_ y_)) =

cons(x_ deduplicate(remove(x_ y_)))

# cumsum xs: cumulatively sum the elements of xs
# Example: cumsum ([2 ,3,1]) = [2,5,6]
cumsum ([]) = [];
cumsum(cons(x_ y_)) = cons(x_ cumsum(add(x_ y_)))

# filter_odd xs: remove the odd numbers from xs
# Example: filter_odd ([2 ,3,1,4 ]) = [2,4]
filter_odd ([]) = [];
filter_odd(cons(x_ y_)) =

if(even?(x_) cons(x_ filter_odd(y_)) filter_odd(y_));

# index-in-head xs: return the headth element of the xs
# Example: index_in_head ([2,3]) = [3]
index-in-head(cons(0 y_)) = 0
index-in-head(cons(succ(x_) y_)) = nth(x_ y_);

# head-or-tail: return the larger of head or sum-of-tail
# Example: head_or_tail ([2 ,3,1]) = [4]
head-or-tail ([]) = 0;
head-or-tail(cons(x_ y_)) =

if(greater(x_ sum(y_)) x_ sum(y_));

# count3 xs: how often does 3 appear in xs?
# Example: count3 ([2 ,3,3]) = [2]
count3(x_) = count(succ(succ(succ(0))) x_);

Listing 1: Rewrite rules for the concepts in Experiment 1.

Participants played a game called Martha’s Magical Ma-
chines in which they helped a scientist, Martha (Fig. 1a),
study magical machines. Magical machines come in differ-
ent forms (e.g. Fig. 1b) but all take numbered packages as
input and return numbered packages as output (Fig. 1c). Par-
ticipants were asked to predict the output for different inputs.
Each participant interacted with 5 magical machines, one in
each of five rounds. For each participant round, we uniformly
sampled a concept from a pool of twelve concepts (see List-
ing 1) without replacement. Within each round, participants
completed 10 consecutive trials sampled randomly without
replacement from a pool of per-concept inputs.

On each trial, participants saw one to five packages waiting
to be submitted to the machine (Fig. 1d). Each package was
numbered between 0 and 9. Participants then predicted how
many packages the machine would produce (between one and
five), their labels (between 0 and 9), and their order. After
clicking Test, an input would be submitted to the machine and
the correct output produced. The history of inputs, outputs,
and participant responses was displayed next to the machine
(Fig. 1e). Once a participant submitted 10 predictions for
one machine, they were asked to briefly describe what they
thought the machine did, and then moved to the next round
to interact with a new (visually different) machine. The game
finished after 5 rounds (i.e. 5 machines).

Results The right side of Figure 2 shows mean performance
on the last 5 predictions for each function. Participants gener-
ally performed better for concepts that involved arithmetical
operations such as total or increment. Concepts that in-
volved indexing of the sequence such as index-in-head or
head-or-tail were generally more difficult to learn. The
hardest concept, however, was counting the numbers of 3s in
a sequence. Analyzing performance within each participant
revealed a strong correlation between average performance
during the first 5 trials and performance during the last 5 tri-
als over all rounds (r(148) = 0.80, p < .001). This indicates
that some people were consistently better at figuring out the
concepts than others. While performance and round number
were only marginally correlated (r(148) = 0.04, p = .019),
performance and trial number within a round were signifi-
cantly correlated (r(148) = 0.36, p < .001). Mean scores
across the first 5 trials were indeed significantly different
from mean scores across the last 5 trials over all problems
(t(149) = 22.04, p < .001, d = 1.8).

We picked the 12 concepts by hand, picking what we thought were easy and hard concepts to see if there was significant variance in human performance and whether 
our model could capture it. What you see here (sorry for the small font!), are the rules our modeled needed to learn for each of these 12 concepts. Each of these sets of 
rules represents what our model must learn to add to its language.

Problem: Transform a knowledge base of observations (left) into a logical 

theory containing generalized predicates and core facts (right).

Approach: Learn programs using neuro-symbolic induction. This 

overview shows one reasoning step.

Results: This approach recovers taxonomic relations (left) and out-

performs previous state-of-the-art on a variety of problems (right; score is 

percentage of random initializations leading to solution. !ILP is previous 

state-of-the-art (Evans, Grefenstette, 2018)).

[grandfatherOf, X, Y] :-
[[fatherOf, X, Z], [parentOf, Z, Y]].

[parentOf, X, Y] :- [fatherOf, X, Y].
[parentOf, X, Y] :- [motherOf, X, Y].
[fatherOf, ABE, HOMER].
[fatherOf, HOMER, BART].
[motherOf, LILY, HARRY].
...

[grandfatherOf, ABE, BART].
[fatherOf, ABE, HOMER].
[fatherOf, HOMER, BART].
[parentOf, ABE, HOMER].
[parentOf, HOMER, BART].
[fatherOf, JAMES, HARRY].
[parentOf, LILY, HARRY].
...

Problem: Build systems which write code automatically from the kinds of 

specifications humans can easily provide, such as examples and natural 

language instruction.

Results: This approach can synthesize programs more accurately than

baselines in a variety of domains: list processing from examples (left), text

editing from examples (middle), and character and list manipulation from

language description (right).

Approach: Learn Program sketches, which serve as an intermediate 

between pattern recognition and explicit search approaches.

Count >0 (Map +1 input) Count >0 (Map (HOLE))  

[1, 3, -4, 3]-> 3 
[-3, 0, 2, -1]-> 2 

[7,-4,-5, 2]-> 2 

.25 .03 .02 .06 .40 .05 

he
ad
 

ta
il
 

+1
 

-1
 

in
pu
t 

su
m 

... 

Spec Program

[2,3,4,5,6] → [2,4,6] 
[5,8,3,2,1,12] → [8,2,12] filter(input, x: x%2==0)

Given an array of numbers, your 

task is to compute the median of 

the given array with its digits 

reversed.

(reduce(reverse(digits(de
ref (sort a) (/ (len a) 
2)))) 0 (lambda2 (+(* 
arg1 10) arg2))) 

def search(data, h0, N=1500, n_top=10, n_steps=50, confidence=2/3): 
    dataset = [] 
    h, score = h0, score(h0) 
    hs = heap([(h, score)]) 
    for (i, o) in data: 
        for _ in range(N): 
            h_next = propose(h) 
            score_next = score(h_next) 
            h, score = metropolis(h, score, h_next, score_next) 
            hs.insert((h, score)) 
        best_hs = hs.take_top(n_top) 
        o_hat = most_likely_output(i, n_steps, best_hs) 
        data.append((i, o)) 
        N *= (confidence if o_hat == o else 1/confidence) 
    return hs

Stochastic search over TRSs


