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Problem: Model human learning of '.' o 47 =47 Problem: Build systems which write code automatically from the kinds of Problem: Transform a knowledge base of observations (left) into a logical
structured concepts in two online - > specifications humans can easily provide, such as examples and natural theory containing generalized predicates and core facts (right).
experiments USing 2 game-based .\ CeeTmeeE Ianguage Instruction. [grandfatherO0f, ABE, BART] [grandfatherOf ]
. aot" PN ’ ’ . ,y A, " —
paradigm. 5 47 »0 [+ [fatherOf, ABE, HOMER]. [[fatherOf, X, z1, [parentOf, z, YII.
Spec Program [fatherOf, HOMER, BART]. [parent0f, X, Y] :- [fatherOf, X, YI.
: [parent0f, ABE, HOMER]. [parentOf, ] := [motherOof, X, Y.
Approach: Search over rewrite systems (top) to learn concepts (bottom). [2,3,4,5,6] - [2,4,6] filter(inout. x: x%2==0) [parentOf, HOMER, BART]. [fatherOf, ABE, HOMER].
def search(data, ho, N=1500, n_top=10, n_steps=50, confidence=2/3): [5 ’ 8, 3 ’ 2 ’ 1, 12] - [8, 2 ’ 12] P ! . > [fatherOf, JAMES, HARRY], [father0f, HOMER, BART].
dataset = [] [parent0f, LILY, HARRY]. [mother0f, LILY, HARRY].
S S Given an array of numbers, your (reduce(reverse(digits(de e
for (i, o) in data: task is to compute the median of ref (sort a) (/ (len a) Approach: Learn programs using neuro-symbolic induction. This
for _ 1in range(N): H : : P . .
h_next - propose (h) the given array with its d|g|tS 2) ) ) ) 0 (-l.ambdaz (+(* overview ShOWS one reasonlng Step
score_next = score(h_next) reversed. argl 1®) argz) ) )

h, score = metropolis(h, score, h_next, score_next)
hs.insert((h, score))

best_hs = hs.take_top(n_top) Known Facts

g;::ta;p';‘zjfz}""j};’—“tp“t“’ n-steps, best_hs) Approach: Learn Program sketches, which serve as an intermediate -+ (Pou (Sou Opie{ Vbt ———> Update ——[# § © @)
N %= (confidence if o_hat == o else 1/confidence) between pattern recognition and explicit search approaches.
return hs
# head-or-tail : the larger of head or summed tail —— Learned neural network / \ Qo“’ LY e
# const xs: return 3 # Example: head_or_tail ([2,3,1]1) = [4] | Recognizer, |l AV N
# Example: const([1,2,4]) = [3] head-or-tail ([]) = 0; | > ro(X, ) 25 NS I I o G50
const(x_) = 3; head-or-tail (cons(x_ y_)) = AT _ Production probabilities, ¢
if(greater(x_ sum(y_)) x_ sum(y_)); (1, 3, -4, 31-> 3 4
# total xs: sum all the elements of xs -3, O 2, -11-> 2 Neural sketch
# Example: total([1,2,3]1) = [6] # count3 xs: how often does 3 appear in xs? [(7,-4,-5, 2]-> 2 >| generator, |—» Count >0 (Map (HOLE)) —[* KEnumerator — Count >0 (Map +1 input) h
total (x_) = sum(x_); # Example: count3([2,3,3]) = [2] qe(—|X) K /
count3(x_) = count(succ(succ(succ(@))) x_);
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